Chip-integrated Nanophotonic Structures for Classical and Quantum Devices
نویسنده
چکیده
Chip-integrated nanophotonics investigates the interaction of light with nanostructures integrated on a chip. Lying at the intersection of condensed matter physics, optics, nanotechnology, and materials science, nanophotonics draws upon expertise from broad areas of physics and engineering, while presenting major opportunities to advance fundamental physics and transformative photonic technologies. In this talk, I will focus on our experimental research in two areas of nanophotonics.
منابع مشابه
Active 2D materials for on-chip nanophotonics and quantum optics
Two-dimensional materials have emerged as promising candidates to augment existing optical networks for metrology, sensing, and telecommunication, both in the classical and quantum mechanical regimes. Here, we review the development of several on-chip photonic components ranging from electro-optic modulators, photodetectors, bolometers, and light sources that are essential building blocks for a...
متن کاملFiber - coupled nanophotonic devices for nonlinear optics and cavity QED
The sub-wavelength optical confinement and low optical loss of nanophotonic devices dramatically enhances the interaction between light and matter within these structures. When nanophotonic devices are combined with an efficient optical coupling channel, nonlinear optical behavior can be observed at low power levels in weakly-nonlinear materials. In a similar vein, when resonant atomic systems ...
متن کاملReconfigurable exciton-plasmon interconversion for nanophotonic circuits
The recent challenges for improving the operation speed of nanoelectronics have motivated research on manipulating light in on-chip integrated circuits. Hybrid plasmonic waveguides with low-dimensional semiconductors, including quantum dots and quantum wells, are a promising platform for realizing sub-diffraction limited optical components. Meanwhile, two-dimensional transition metal dichalcoge...
متن کاملNanophotonic rare-earth quantum memory with optically controlled retrieval.
Optical quantum memories are essential elements in quantum networks for long-distance distribution of quantum entanglement. Scalable development of quantum network nodes requires on-chip qubit storage functionality with control of the readout time. We demonstrate a high-fidelity nanophotonic quantum memory based on a mesoscopic neodymium ensemble coupled to a photonic crystal cavity. The nanoca...
متن کاملSolid-state nanophotonics: towards on-chip devices for the generation and manipulation of single photons
Photons are considered as ideal carriers of information in several applications of quantum information processing (QIP) since they are easy to generate by several means and manipulate with linear optics. In addition, the information encoded in photons using different degrees of freedom such as polarization, time bin, or path can be carried over long distances due to the weak interaction with th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015